Workshop

Future trends in PCB technologies for space applications
22nd-23rd October 2009
ESTEC, Noordwijk, The Netherlands
Status and trends in RF and microwave PCB technologies and manufacturing

General Overview
RF and microwave PCBs

- CIMULEC Group
- RF and microwave world
- Materials for RF and microwave boards
- Technologies and manufacturing process
- PCB finishes
- Next steps
CIMULEC Group

Two plants for a global offer on the European market

<table>
<thead>
<tr>
<th>Cimulec</th>
<th>Special technologies (SBU, HDI, Rigid-flex, metal core, RF, embedded, …)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metz, France</td>
<td></td>
</tr>
<tr>
<td>www.cimulec.com</td>
<td></td>
</tr>
<tr>
<td>CSI Sud-Ouest</td>
<td>Prototypes and short delivery times</td>
</tr>
<tr>
<td>Toulouse, France</td>
<td></td>
</tr>
<tr>
<td>www.csi-pcb.com</td>
<td></td>
</tr>
</tbody>
</table>

- CIMULEC Group is mainly dedicated to avionic, military and space markets
- Production of prototypes, small and medium series
- Employees: 120
- Global turnover: around 13 M€
RF & Microwave Printed world

- A complex world with many changes in the last decade
 - signal propagation is really different compared to analog or digital applications,
 - the amount and speed of the information processing is increasing as daily life becomes information dependent,
 - use of higher frequency bands

- RF and microwave: technology for the future?
 - higher frequencies request larger bandwidth,
 - mass savings,
 - advanced technologies,
 - flexibility, mixed digital and microwave boards
Materials for RF and microwave boards

Main suppliers providing RF materials

- Hitachi Chemical
- nelco
- isola
- ROGERS CORPORATION
- ARLON
- GORE
- TACONIC
- Panasonic

Two main properties give the right answer for a defined application:

- the dielectric constant \([Dk] \) : determines the speed of the electronic signal in the PCB
- the dissipation factor \([Df] \) : represents the dielectric loss of the signal in the circuit
- Both values affect the size of the PCB and the signal quality

Df and Dk may vary versus frequency, temperature and humidity
The different types of material available:

- modified epoxy
- thermoset
- thermoplastic: PTFE based materials

Each type can be reinforced by using glass fabric (X and Y axis) and/or organic fillers (Z axis)

The resin system is somewhat different from the well known and widely used epoxy or polyimide ones.
Materials for RF and microwave boards

Some figures about key properties for RF and microwave materials

<table>
<thead>
<tr>
<th>Resin system type</th>
<th>Dk</th>
<th>Df</th>
<th>Tg (°C)</th>
<th>CTE (TMA) Z axis</th>
<th>Time to delamination (Copper removed)</th>
<th>Td (-5%) by TGA (10°C/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DSC 50-260°C</td>
<td>T260</td>
</tr>
<tr>
<td>Modified epoxy</td>
<td>3.5 - 3.8</td>
<td>0.008 - 0.02</td>
<td>180 - 210</td>
<td><3.5%</td>
<td>>60 min</td>
<td>> 10</td>
</tr>
<tr>
<td>Thermoset</td>
<td>3.2 - 10</td>
<td>0.003 - 0.006</td>
<td>> 260</td>
<td><3.5%</td>
<td>>60 min</td>
<td>> 20</td>
</tr>
<tr>
<td>Thermoplastic</td>
<td>2.2 - 10</td>
<td>0.0012 - 0.003</td>
<td>> 280</td>
<td><3.5%</td>
<td>>60 min</td>
<td>> 15</td>
</tr>
</tbody>
</table>

Summary

<table>
<thead>
<tr>
<th></th>
<th>Modified epoxy</th>
<th>Thermoset</th>
<th>Thermoplastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low losses</td>
<td>-</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Homogenous prepreg</td>
<td>++</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Thermo-mechanical properties</td>
<td>+</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Processability</td>
<td>++</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Cost</td>
<td>++</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>
RF and microwave PCB technologies

- All technologies available for epoxy and polyimide boards are achievable:
 - single side or double sides PCBs
 - standard multilayers boards
 - sequential build-up

For standard multilayers and SBU boards, there are some limitation based on the material choices

- Process has to be manage:
 - lamination cycle (temperature, pressure, …)
 - drilling parameters (RF materials are good candidate to smearing)
 - metallisation (desmear, electroless copper, …)
 - routing parameters
 - improved etching tolerances
RF and microwave PCB technologies

- **Standard multilayer**
 - 8 layers board full Rogers 4003
 - Prepreg Rogers 4350
 - Dk : 3.54
 - Df : 0.005

![Microsection picture]

- **Sequential build-up using polyimide prepreg (antenna application)**

![Diagram of sequential build-up]
RF and microwave PCB technologies

Useful tips for RF applications
(already in use in production on a daily basis, including for space application)

- Embedded resistors: more functionality such as signal division and/or distribution, reduce signal adaptation issues, reduce assembly time. Thin film NiP technology (Ohmega or Ticer)

- “RF openings”: avoid issues with signal adaptation and reduces signal losses

- Backdrills: improve buildup (less drilling sequences) and minimize antenna phenomenon
RF and microwave PCB technologies

Useful tips for RF applications (continue)
(already in use in production on a daily basis, including for space application)

• Mechanical blind holes with depth control drilling

• Mixed lay-up as for example PFTE based material and polyimide.
 Mixing materials has to be manage with care:
 - Δ CTEz can cause reliability failure
 - only one prepreg type in one lamination cycle

• External or internal heat sink for thermal management
RF and microwave PCB technologies

Space application: Beam Forming Network (STENTOR)

<table>
<thead>
<tr>
<th>Layer</th>
<th>Material 1</th>
<th>Material 2</th>
<th>Thickness [µm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Copper</td>
<td>Core</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>RT 5002</td>
<td></td>
<td>254</td>
</tr>
<tr>
<td>9</td>
<td>Speedboard C</td>
<td>Prepreg</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Copper</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Speedboard C</td>
<td>Prepreg</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Copper</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Speedboard C</td>
<td>Prepreg</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Copper</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Speedboard C</td>
<td>Prepreg</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Copper</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Speedboard C</td>
<td>Prepreg</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Copper</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Speedboard C</td>
<td>Prepreg</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Copper</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Speedboard C</td>
<td>Prepreg</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Copper</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Speedboard C</td>
<td>Prepreg</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Copper</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Copper</td>
<td></td>
<td>2644</td>
</tr>
</tbody>
</table>

Overall thickness: 2644 µm
RF and microwave PCB technologies

Mixed Multilayer RF/BF SBU with internal heat sink

Summary :
- 12 layers / 3 drilling seq.
- RO 4003 material
- Copper sink thickness : 0.8 mm
- Total thickness : 3.2 mm

Finishing :
- RF openings : pure gold (bonding)
- nickel on sink level
- Selective refused SnPb elsewhere
RF and microwave PCB technologies

OhmegaPly® resistors:
- 96 resistors implemented on 3 different layers in the BGA (pitch 0.8 mm) region.
- Resistor nominal value: 700 Ohms
- Resistor dimensions: 1960 x 280 µm
- Ohmegafoil characteristic: 100 Ω/□

17 layers board with 3 drilling sequences
- Dimension: 330x230 mm
- Thickness: 3 mm
- Aspect ratio: 10
- Mixed materials
- Impedance controlled
- 3 resistive layers
- Pad-on-hole technology
- Backdrilling with three different height
- Surface finish: ENIG and electrolytic AuCo
RF and microwave PCB finishes

- Tin-lead is the unique agency approved PCB finish at that time
- Tin-lead is not compliant with RF and microwave requirements

Need for a qualified alternative to SnPb

- Electroless Silver?
- NiPdAu?
- Galvanic Gold?
- ENIG?
RF and microwave PCB finishes

Some alternatives to SnPb are already used in RF space applications:

- ENIG: Globalstar 2, Meghatropics, Stentor and followings …
- Galvanic gold: used for gold wire bonding

NiPdAu looks promising on the paper for future needs:

- no black pads, no skip plating,
- compliant with Al and Au wire bonding,
- Pd allows SMT soldering,
- typical thicknesses are:
 - Ni = 3.5 to 5 µm
 - Pd = 0.2 to 0.4 µm
 - Au = 0.05 to 0.1 µm

To be tested in a near future
RF and microwave PCB in the future …

- The use of RF and microwave boards will increase in electronic devices including space applications
- PCBs will have a high level of integration (buried and blind vias, embedded components, heat sink, mixed materials, cavities, …)
- Material suppliers are still working on new development
 - novel modified polyimide low Dk / Df
 - novel flex low Dk / Df material
 - need for a low Dk / Df prepreg with standard flow properties
- PCB manufacturers will need to manage a wide range of specific and complex processes
- The keys for success are covered by:
 - Low losses material choices
 - design to cost, for manufacturability and reliability
 - end-users and PCB manufacturers have to work in a close relationship from the opening of a new project until the deliveries
- Need for a finish alternative to SnPb
- Need to anticipate new studies on disruptive process and technologies
Questions …

• Cimulec
 Ennery, France
 www.cimulec.com

• CSI Sud-Ouest
 Toulouse, France
 www.csi-pcb.com

Thank you for your attention